27 สิงหาคม 2563

Big Data

 Big Data

ประวัติความเป็นมาของข้อมูลขนาดใหญ่

คำว่า "ข้อมูลขนาดใหญ่" หมายถึงข้อมูลที่มีขนาดใหญ่ เร็ว หรือซับซ้อนจนยากหรือเป็นไปไม่ได้ที่จะประมวลผลโดยใช้วิธีการแบบเดิม การเข้าถึงและจัดเก็บข้อมูลจำนวนมากเพื่อทำการวิเคราะห์มีมานานแล้ว แต่แนวคิดเกี่ยวกับข้อมูลขนาดใหญ่เป็นที่แพร่หลายในช่วงต้นปีค.ศ. 2000 เมื่อดั๊ก ลานีย์ นักวิเคราะห์อุตสาหกรรมได้ให้คำจำกัดความที่เป็นที่เข้าใจกันในขณะนี้ว่า ข้อมูลขนาดใหญ่ประกอบด้วย3Vs:


Volume (ปริมาณ) : องค์กรต่างๆ รวบรวมข้อมูลจากหลากหลายแหล่ง ซึ่งรวมถึงธุรกรรมของธุรกิจ อุปกรณ์อัจฉริยะ (IoT) อุปกรณ์อุตสาหกรรม วิดีโอ โซเชียลมีเดีย และอื่นๆ ในอดีต การจัดเก็บข้อมูลถือเป็นปัญหาใหญ่ – แต่เมื่อค่าใช้จ่ายในการจัดเก็บบนแพลตฟอร์มต่างๆ เช่น พื้นที่จัดเก็บข้อมูลส่วนกลาง (Data Lake) และ Hadoop ลดลง ภาระนี้จึงบรรเทาลง

Velocity (ความเร็ว) : ด้วยการเติบโตของ Internet of Things ข้อมูลจะถูกส่งไปยังธุรกิจต่างๆ ด้วยความเร็วที่ไม่เคยมีมาก่อนและต้องได้รับการจัดการในเวลาที่เหมาะสม แท็ก RFID, เซ็นเซอร์ และสมาร์ทมิเตอร์ช่วยผลักดันความต้องการในการจัดการกับกระแสข้อมูลเหล่านี้ในแบบเรียลไทม์

Variety (ความหลากหลาย) : ข้อมูลมีในทุกรูปแบบ นับตั้งแต่ข้อมูลที่มีโครงสร้าง ตัวเลขในฐานข้อมูลแบบดั้งเดิม ไปจนถึงเอกสารข้อความ อีเมล วิดีโอ เสียง ข้อมูลหุ้น และธุรกรรมทางการเงิน

ทำไมข้อมูลขนาดใหญ่จึงมีความสำคัญ?

ความสำคัญของBig Dataไม่ใช่เพียงแค่ปริมาณข้อมูลจำนวนมากที่คุณมี หากแต่เป็นการที่คุณจัดการกับมันต่างหาก คุณสามารถได้รับข้อมูลจากหลายแหล่งข้อมูลและวิเคราะห์ข้อมูลเหล่านั้น เพื่อค้นหาคำตอบซึ่งจะช่วยในการ 1) ลดต้นทุน 2) ลดเวลา 3) พัฒนาผลิตภัณฑ์ใหม่และหาข้อเสนอที่ดีที่สุด และ 4) ตัดสินใจอย่างชาญฉลาด เมื่อคุณรวมข้อมูลBig Dataเข้ากับ การวิเคราะห์ที่มีประสิทธิภาพ คุณจะสามารถทำงานที่เกี่ยวข้องกับธุรกิจให้บรรลุผลได้ ยกตัวอย่างเช่น
  • 👌ระบุสาเหตุของความผิดพลาด ประเด็นและความผิดพลาดได้ใกล้เคียงแบบเรียลไทม์
  • 👺กำหนดคูปองโปรโมชั่นที่จุดขายตามพฤติกรรมการซื้อของผู้บริโภค
  • 👷คำนวณความเสี่ยงของทั้งพอร์ตโฟลิโอซ้ำได้ในเวลาไม่กี่นาที
  • 💂ตรวจพบพฤติกรรมการฉ้อโกงก่อนที่จะส่งผลกระทบต่อองค์กรของคุณ










ไม่มีความคิดเห็น:

แสดงความคิดเห็น

ฟอร์มของ น.ส.ศศิวิมล ลิ้มเจริญ

กำลังโหลด…